PC版
搜索导航
论文网 > 理学论文 > 数学论文

数学方法在矿产地质工作中的应用研究

  前言:矿产地质工作将定向和定量研究相结合,而数学方法是定量研究的有效途径,以地质学基本理论为基础,计算机技术为手段,数学方法为工具进行矿产地质工作对解决地质相关问题具有重要的现实意义,所以全面掌握现阶段已经在矿产地质工作中应用的数学方法,并不断探索更广泛的有效结合,是推动矿产地质工作发展的有效途径。
  一、一般数理统计分析方法的应用
  统计是通过对主体研究对象的部分进行随机抽取,并针对抽取部分进行观察,获得部分所表达出的信息,再将所得数据在研究对象全体范围内进行推断,由此得到研究对象整体的特征,而矿物地质工作的研究对象呈现出明显的统计规律,例如其分布、产生条件等,但由于不同的地质事件和观测结果会受到观察条件的影响,而表现出不同的现象,所以其客观概率存在明显的差异,利用概率分析法可以对不同的地质事件发生的概率进行全面的预测,为矿产地质工作提供依据,例如在油气勘查过程中,可以利用贝叶斯公式( )等数学概率方法对勘查过程中的不确定因素和风险因素进行科学的评估,由此有效降低勘探过程中可能发生的风险,避免不必要的人员财产伤害,为油气勘查决策提供可靠的依据,使油气地质学和经济学两种研究对象和研究性质存在较大差异的学科相协调,使地质评价与经济分析相结合,并将获得的评价结果用具体的数学量值进行表达[1]。单变量统计分析和多元统计分析方法都是现阶段矿产地质工作中较为常见的数学方法,单变量统计分析法针对两个随机变量之间的关系进行表达,例如信息量计算、单因素方差分析等,而多元统计分析方法则针对多项随机变量之间的关系进行研究,更加注重从不同的角度表述变量之间的关系,例如方差分析、回归分析、对应分析等,但值得注意的是单变量统计分析方法并不是随时可以推广到多元分析,例如因子分析、各种分类分析等,现阶段矿产地质工作中应用统计学方法创新出克里金数学方法就是针对矿石品位、矿床储量及误差估算进行的变异函数统计方法,矿产地质工作中对沉积岩的分类、沉积环境辨别,构造地形的变化趋势、勘探井中油气水层的划分等工作都应用此数学方法。
  二、特殊数理统计分析方法的应用
  在实际矿产地质工作中经常遇到矿产分布与正态分布假设之间存在较大差异,地质化探数据离散性强的情况,以一般统计学正态分布及最小二乘法并不能够科学的反应勘探地质真实环境的情况,这种敏感的错误被称为稳健性,所以针对数据点群中心为基础,以数据点群的离散程度为自变量进行稳健性统计分析,其表述更能真实地反映出客观矿产地质环境,目前最大似然评估、有序统计量的线性组合等已经应用于矿产地质工作中,此种方法可以有效的控制实际情况与统计分析之间的偏离,避免因统计数据结果与矿产地质实际分部之间存在较大差异而致使勘察规划彻底失败等重大问题的出现。除此之外,由于矿产地质工作针对定性和定量两方面进行分析,所以数学方法中的定向数据统计具有实际意义,例如矿产地质工作中会针对古水流方向、斜层理生物化石等存在于平面或圆上的方向性数据进行研究,针对断层面及其构成元素对断层形成所受应力及机制等三维定向数据进行分析等,由此可以发现定型数据的统计分析并没有明确的数值做基础,其更加强调研究对象在性质上的差异,当将重心转移到具体数值时就产生了定量统计方法[2]。
  三、数学模型的应用分析
  确定型模型即在不存在随机成分的情况下研究因果关系的数学模型,例如在矿产地质工作中泥岩中孔隙率和深度之间的关系就可以利用确定性模型中的指数方程进行表述, ,利用积分方程
  表述矿产地质工作中研究泥岩孔隙率变化函数在恢复底层厚度中的数值变化,假如在矿产地质工作中已经通过对矿样检测得出其含有的三氧化二铬(铬绿)和密度最大的金属锇的数据,有了解铬与砷的含量之间存在必然的联系,那么就可以利用数学模型直接对他们之间的关系进行表达,或者在矿产地质工作中对勘查到的油气藏位置所含油气质量进行判断,就可以利用油藏含油饱和度与储层毛管压力、孔喉歪度、排驱压力等因素之间的关系进行数学模型表达,以此得出科学的论断,例如三肇和古龙凹陷勘探井19口,其中17口与预测结果完全相符,负荷率将近90%,由此可见此数学方法在矿产地质工作中应用效果明显[3]。
  四、质过程的数学模拟
  地质系统的形成要经过漫长的地质变化过程,所以通过数学模拟可以真实的反映并再现历史过程,为矿产地质工作提供科学的依据,其不仅缓解了人工实验对实验材料和技术的依赖,而且使演化过程更加真实,例如在高温、高压的地质环境中岩石所发生的性能形状变化,不同边界层之间能量、耦合和转换机制等都可以利用计算机数学模拟进行再现,这是传统物理实验所不可能完成的任务,目前将计算机技术、数学统计方法及数学模拟和地质学理论相结合的统计分析方法以达到30种以上,例如蒙特卡洛法、趋势分析法等统计预测方法;逻辑斯特模型、油藏规律分布法等外推预测法;油田模型法、沉积速度法等类比预测方法;埃德曼法、盆地动态模型等成因预测法;特尔菲法、模糊集合综合评价法等综合预测法等。并在数学计算的基础上利用计算机技术直接为矿产地质工作绘制地质、地貌、土壤分布图及具体的柱状对比图及石油综合录井柱状图等,更加具有科学性,而且可以真实的反应地质环境,为决策分析提供科学的依据。特别是质人工智能专家系统的应用更是明显推进矿产地质工作发展,其应用神经网络模型,利用遗传算法、小波分析及其变换法、模拟退火算法等对地质工作中的相关数据进行归纳分析,由此使工作人员更加全面的掌握矿产地质工作中存在的规律,并在此基础上指导实践,例如针对四川盆地某层天然气资源潜力进行预测的过程中利用数学模拟的方法判断出其开发潜力在15.2亿立方米至91.7亿立方米之间,为具体的勘探规划制定及勘探可行性判断提供了有效的依据[4]。
  随着数学领域和计算机应用领域的逐渐深化和人们矿产地质工作经验的日渐丰富,数学方法在矿产地质工作中的应用将更加广泛有效,数学模型得到不断优化,针对矿床、地层、沉积等方面的表述将更加全面科学,智能化、人性化、机械化是数学方法应用的未来趋势,由此推动矿产地质工作发展。
  结论:通过上述分析可以发现,计算机技术的发展有力地推动了数学方法与矿产地质工作相结合,并为两者结合提供了有效手段,所以随着未来计算机技术、数学研究方法和矿产地质勘探技术的深化,两者的结合将不断以新的形式呈现,由此推动相关领域的发展,所以数学方法在矿产地质工作中应用是矿产地质领域发展的必然选择。■

相关论文

地质矿产数学方法应用研究
写生课程融入学前教育美术教学的应用
新农村建设中强化农村经济经营管理的
课程思政融入“保险学”教学的路径及
辅导员视角下新闻传播学类专业学生就
人事档案管理信息化建设创新路径研究
试论战略成本会计在企业管理中的应用
河南打造具有国际影响力的黄河文化旅
数字媒体时代辽宁老字号企业品牌运营
大数据时代拼多多盈利模式研究
新文科建设背景下管理类应用型本科人