PC版
搜索导航
论文网 > 理学论文 > 物理学论文

基于COMSOL的HID灯物理模型

  中图分类号:TH133 文献标识码:A 文章编号:1009-3044(2017)04-0214-02
  1 引言
  目前,在工程实际中,很多多物理场耦合作用下的实验还不具备开展条件,且无具体的理论指导设计,必须采用数值仿真的方法来研究和测评[1,2],因此,本文以COMSOL Multiphysics(以下简称COMSOL)为工具,建立高强度气体放电灯的COMSOL模型。利用COMSOL高效的计算性能能力和独特的多场全耦合分析能力,保证了数值仿真的高度精确[3]。
  2 COMSOL建模流程
  COMSOL中使用“模型树”来控制整个建模流程,是一个动态的而且逻辑性很强的控制工具,在模型创建工程中,沿着模型树的节点和分支进行即可。COMSOL建模的步骤主要有几何建模、物理场施加、网格剖分、方程和边界参数的设定、求解以及后处理。以下着重介绍几何建模、物理场分析和网格剖分。
  2.1 几何建模
  高强度气体放电(HID)灯是一种节能型电光源,具有高光效、高显色性、高亮度、高通量和寿命长等优点,是最有应用价值的大功率光源之一,被广泛应用于道路、机场、景观、场馆等中大功率照明场合。
  在COMSOL 中,有多种方法绘制几何模型:
  (1)直接绘制几何对象:直接通过内置的绘图工具。
  (2)CAD导入:用户可直接导入事先设计好的几何模型,并且COMSOL提供与PRO、SolidWorks和Inventor的双向实时连接,COMSOL还进一步提供对CAD几何模型的修改功能,用户可在导入之后根据需要进行修改。
  (3)利用脚本编程建模:COMSOL还提供与MATLAB完全兼容,支持利用数学公式直接编写脚本建模,也可使用实验数据甚至图像数据直接建模。
  HID灯主要由电极和燃烧器组成,燃烧器是位于玻璃灯泡内部,处于真空状态,燃烧器的材质是多晶铝(PCA),电极的材质是钨[4]。运用COMSOL软件,建立HID灯的二维轴对称模型如图1所示。
  
  图1 典型的HID灯结构及其二维几何模型
  2.2 物理场分析
  HID灯的内部物理过程涉及电、热、流等物理场,可用相应的物理方程描述。
  燃烧器区域内导电介质的电场方程为:
  式中[V]表示静电势,[σ1]表示受温度和压力影响的气体的导电性。
  燃烧器区域的边界条件方程为:
  式(2)也称为诺伊曼边界条件。[J0]表示内部的电流密度,作用于电极尖端,作用是确保电极尖端是同性质的电流,取上端电极为正值,下端电极为负值。电极和灯墙的侧面定义为绝缘[J0=0]。
  灯内的温度分布方程为:
  式中[κ]表示热导率,[T]表示温度,[ρ]表示质量密度,[U]表示速度向量,[CP]表示固定压力下热容,[Q]表示热源密度。
  热源密度[Q]由下面方程计算所得:
  式中[q]是由插值函数定义的,用于表示辐射损失。
  质量密度[ρ]由以下方程得出:
  式中[p]表示气体的静态压力,[M]表示气体的摩尔质量,[R]表示理想的气体常数。
  燃烧器位于玻璃灯泡内部,处于真空状态,不受外界空气的热传导和热对流的影响,其热损失主要通过热辐射方式,故燃烧器墙壁的外表面的热通量为:
  式中[σ2]表示玻尔兹曼常数。
  燃烧器区域中的流体速度场由以下方程所得:
  式中[η]表示流体的粘度,[F]表示体积力,[I]表示单位算子[5]。
  2.3网格剖分
  COMSOL Multiphysics在有限元计算过程中,必须将建立的模型划分为较小的单位进行求解,这个过程称为网格剖分。网格剖分的疏密程度直接影响计算结果的准确度,然而,并不是网格划分越密越好,网格划分越密意味着网格单位的数量越多,这样计算时间就长。
  3 仿真结果
  仿真结果表明:该仿真结果得到的HID灯温度分布图与真实的HID灯温度分布接近,从图中可以看出HID灯内温度最高点出现在电极尖附近,两电极尖直接的温度远远高于其他区域,在灯壁附近电极温度最低。
  4 结论
  以上仿真温度与实验测得HID灯内的温度比较贴近,说明该物理模型准确可靠,具有一定的可借鉴意义,为HID灯内部物理过程的研究提供了一种有效的途径。

相关论文

模型基于物理COMSOL
基于事业单位如何加强成本管理的思考
基于数据系统的电力杆塔共享运营策略
基于环境工程专业实验课程思政教育的
基于学习通SPOC的高校保险学课程教学
基于企业内部财务控制制度创新思考
基于协同理论的项目财务管理系统建设
基于当前中药专业教学中存在的问题及
基于民营企业文化建设的问题与对策思
基于案例的行政单位内部控制建设研究
基于现金流量税重构国际税收规则的理